

WHO Air Quality Guidelines, 2021

Francesco Forastiere

CNR-IBIM, Palermo, Italy; Imperial College, London, UK Member of the GDG WHO Air Quality Guidelines

Starting point...

Air Quality Guidelines

Global Update 2005

Pollutant	Averaging time	2005 AQG value
PM2.5	1 year	10 μg/m³
	24 hour (99 th percentile)	25 μg/m ³
PM10	1 year 24 hour 99 th percentile)	20 μg/m ³ 50 μg/m ³
O ₃	8 hour, daily max	100 μg/m³
NO ₂	1 year	40 μg/m ³
	1 hour	200 μg/m ³
SO ₂	24 hour 10 minute	20 μg/m ³ 500 μg/m ³

Levels recommended to be achieved everywhere in order to significantly reduce the adverse health effects of air pollution

AQG 2005

Air Quality Guidelines

Global Update 2005

- Narrative reviews
- Expert opinion
- Inclusive of epidemiology, in-vivo and in-vitro toxicology, human chamber studies
- Inclusive of most mortality and morbidity endpoints
- No clear protocols for reviews and guideline development

What's new – since 2005?

- A Tsunami of new studies
- EPA ISAs CO (2010), NO2 (2016), SO2 (2017), PM (2019), O3 (2020)
- WHO REVIHAAP 2013
- GBD Exposure-Response function 2014
- WHO Guideline Development Handbook (2014)

Strength of evidence on health effects of PM_{2.5}, NO₂ and O₃

ST: short-term, LT: Long-term

C – causal

Lc – likely causal

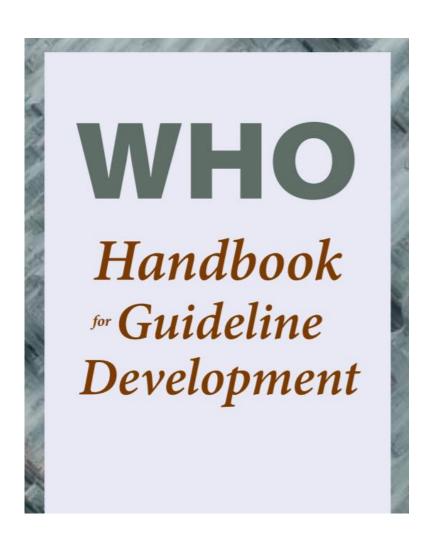
S – suggestive for causal

Systematic reviews:

for PM_{2.5} US EPA 2019 for NO₂ US EPA 2016 for O₃ US EPA 2013/2019

Outcome	PM _{2.5}		NO ₂		O ₃	
	LT	ST	LT	ST	LT	ST
Mortality	С	С	S	S	S	Lc/S
Cardiovascular Effects	С	С	S	S	S	Lc/S
Respiratory Effects	Lc	Lc	Lc	С	С	С
Cancer	Lc/1		S		Lc	
Nervous System	Lc	S			S	S

Courtesy of Jason Sacks


Timeline of the Revision process (2015-2021)

- Fall 2015: Scoping meeting
- 2016: Selection of pollutant-outcome pairs
- 2017: Systematic Reviews commissioned
- 2019: GDG review of Systematic Reviews, adaptation of GRADE
- 2020: From evidence to guidelines; guideline development, external review
- Spring 2021: Final report reviewed by WHO GRC
- September 2021: publication of AQG 2021

Pollutant outcome pairs – evidence for causality and/or public health relevance

- Long-term PM2.5, PM10 & mortality (12 pairs)
- Long-term NO2, O3 & mortality (8 pairs)
- Short-term PM2.5, PM10, NO2, O3, SO2 & mortality (15 pairs)
- Short-term NO2, O3, SO2 & asthma admissions (6 pairs)
- Short-term CO & MI admissions (1 pair)
- A TOTAL OF 42 POLLUTANT-OUTCOME PAIRS REVIEWED

WHO statement in 2016

 WHO uses the GRADE (Grading of Recommendations, Assessment, **Development and Evaluation)** approach to assess the quality of a body of evidence, develop and report recommendations. GRADE methods are used by WHO because these represent internationally agreed standards for making transparent recommendations.

Grades of Recommendation Assessment, Development and Evaluation

Certainty of evidence assessed with *modified* GRADE tool ("Grading of Recommendations Assessment, Development and Evaluation")

www.gradeworkinggroup.org

RATING QUALITY OF EVIDENCE AND STRENGTH OF RECOMMENDATIONS

GRADE: an emerging consensus on rating quality of evidence and strength of recommendations

2011 JCE series

2008 BMJ series

Guidelines are inconsistent in how they rate the quality of evidence and the strength of recommendations. This article explores the advantages of the GRADE system, which is increasingly being adopted by organisations worldwide

Environmental health and clinical medicine are two different disciplines

Clinical medicine

- Evaluation of patients' benefit (positive effects)
- Worry about false positive
- Exposure is well defined
- Human studies

Environmental Health

- Evaluation of population risk (negative effects)
- Worry about false negative
- Exposure is estimated
- Human, animal, in vitro studies
- Susceptible groups

Environment International

journal homepage: www.elsevier.com/locate/envint

GRADE: Assessing the quality of evidence in environmental and occupational health

Rebecca L. Morgan ^a, Kristina A. Thayer ^b, Lisa Bero ^c, Nigel Bruce ^d, Yngve Falck-Ytter ^e, Davina Ghersi ^{f,g}, Gordon Guyatt ^a, Carlijn Hooijmans ^h, Miranda Langendam ⁱ, Daniele Mandrioli ^j, Reem A. Mustafa ^{a,k}, Eva A. Rehfuess ^l, Andrew A. Rooney ^b, Beverley Shea ^m, Ellen K. Silbergeld ⁿ, Patrice Sutton ^o, Mary S. Wolfe ^b, Tracev I. Woodruff ^o. Ios H. Verbeek ^p. Alison C. Hollowav ^q. Nancv Santesso ^a. Holger I. Schünemann ^{a,r,*}

Establish initial level of certainty

Study design	Initial certainty in an estimate of effect	
Randomized trials →	High certainty	
Observational studies →	Low certainty	
		T DE

Consider lowering or raising level of certainty

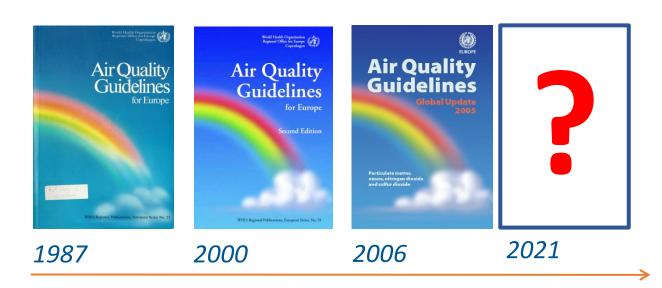
A DOG TAKE TO A DOG TO THE TOTAL THE TOTAL TO THE TOTAL THE TOTAL TO T	r considering lowering alsing certainty
↓ Lower if	↑ Higher if*
Risk of Bias	Large effect
Inconsistency	Dose response
Indirectness	All plausible
Imprecision	confounding & bias would reduce a
Publication bias	demonstrated effect
	or
	 would suggest a spurious
	effect if no effect was
	observed

3. Final level of certainty rating

Certainty
in an estimate of
effect
across those
considerations
High
0000
Moderate
0000
Taxon.
0000
8800
Very low
⊕000
340.000

Adapted from "Methodological idiosyncracies, frameworks and challenges of non-pharmaceutical and nontechnical treatment interventions" (Schünemann 2013)

^{*}upgrading criteria are usually applicable to observational studies only.


From Evidence to Recommendations

- Deciding above which pollutant concentration level significant adverse effects on health occur
- Separate approach for long-term and short-term concentration levels

Low-level PM2.5 studies

PM2.5			M-				
REFERENCE	MEAN	SD	1.645*SD	P5	HR	LCL	UCL
(Pinault 16)	5.9			3	1.26	1.19	1.34
(Cakmak)	6.5	2	3.2	3.2	1.16	1.08	1.25
(Pinault 17)	7.1			3.5	1.18	1.15	1.21
(Weich.)	9.5	1.7	6.7	6.7	0.95	0.76	1.19
(Villeneuve)	9.5	3.5	3.7	4.8	1.12	1.05	1.2
(Di)	11.5	2.9	6.7	7.1	1.08	1.08	1.09
(Hart)	12.0	2.8		7.8	1.13	1.05	1.22

WHO Air Quality Guidelines (AQG): New levels will be substantially lower for PM2.5 and NO2

- Comprehensive assessment of the evidence
- Robust public health recommendations
- Support informed decision-making
- Intended for worldwide use

Pollutant	Averaging time	2005 AQG value
PM2.5	1 year	10 μg/m ³
PM10	24 hour (99 th percentile) 1 year 24 hour 99 th percentile)	25 μg/m ³ 20 μg/m ³ 50 μg/m ³
O ₃	8 hour, daily max	100 μg/m ³
NO ₂	1 year	40 μg/m ³
	1 hour	200 μg/m ³
SO ₂	24 hour 10 minute	20 μg/m ³ 500 μg/m ³

Levels recommended to be achieved everywhere in order to significantly reduce the adverse health effects of air pollution

2005 WHO Guidelines and EU Ambient Air Quality Directive

Air Quality Guidelines Cabbi Units 2003

2005 WHO Guidelines

2021

EU Ambient Air Quality Directive (AAQD)

Pollutant	Averaging time	Guideline value	
PM2.5	1 year	10 μg/m³	5 μg/m ³
	24 hour (99 th percentile)	25 μg/m ³	
PM10	1 year	20 μg/m ³	
	24 hour 99 th	50 μg/m ³	
	percentile)		
O_3	8 hour, daily max	100 μg/m ³	
NO ₂	1 year	40 μg/m³	10μg/m ³
	1 hour	200 μg/m ³	
SO ₂	24 hour	20 μg/m ³	
_	10 minute	500 μg/m ³	

Pollutant	Averaging time	Limit value	
PM2.5	3 year	25 μg/m³	
PM10	1 year 24 hour	40 μg/m ³ 50 μg/m ³	
O_3	8 hour, daily max	120 μg/m³	
NO ₂	1 year	40 μg/m ³	1
	1 hour	200 μg/m ³	
SO ₂	24 hour 1 hour	125 μg/m ³ 350 μg/m ³	

O₃ long-term

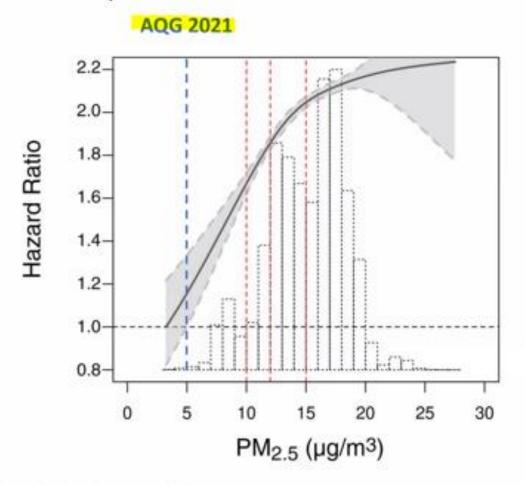
60 μg/m^{3 peak season}

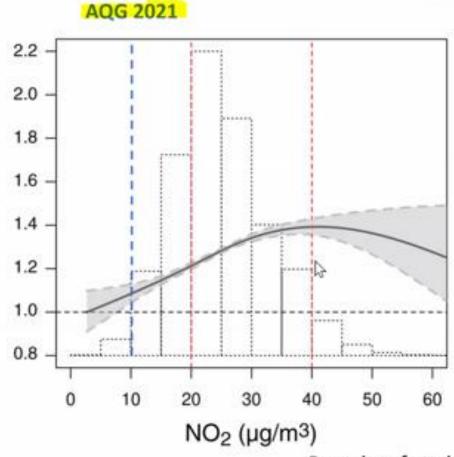
What the AQGs provide...

Summary of recommended AQG levels and interim targets

Pollutant	Averaging time	IT1	IT2	IT3	IT4	AQG level
PM _{2,5} , μg/m ⁸	Annual	35	25	15	10	5
PM _{2,5} , μg/m ^a	24-hour ^a	75	50	37.5	25	15
PM ₁₀ , μg/m³	Annual	70	50	30	20	15
PM ₁₀ , μg/m³	24-hour ^a	150	100	75	50	45
O ₃ , μg/m³	Peak season ^b	100	70	-	-	60
O ₃ , μg/m³	8-hour ^a	160	120	-	-	100
NO₂, μg/m³	Annual	40	30	20	-	10
NO₂, μg/m³	24-hour ^a	120	50	-	-	25
SO _z , μg/m³	24-hour ^a	125	50	-	-	40
CO, mg/m³	24-hour ^a	7	-	-	-	4

Air quality guideline levels for both long- and short-term exposure in relation to critical health outcomes.


Interim targets to guide reduction efforts for the achievement of the air quality guideline levels.


Good practice statements in the management of certain types of particulate matter for which evidence is insufficient to derive quantitative air quality guideline levels, but points to their health relevance.

Association of all natural cause mortality to PM2.5 and NO2 in pooled cohorts of ELAPSE study:

Comparison to the New WHO AQGs

International Journal of Public Health doi: 10.3389/ijph.2021.1604465

International Journal of Public Health

published: 23 September 2021 doi: 10.3389/jiph.2021.1604465

WHO Air Quality Guidelines 2021 - Aiming for healthier air for all

A joint statement by medical, public health, scientific societies and patient > 100 endorsements! representative organisations

Edited and reviewed by:

Olaf von dem Knesebeck, University Medical Center Hamburg-Eppendorf, Germany

Barbara Hoffmann

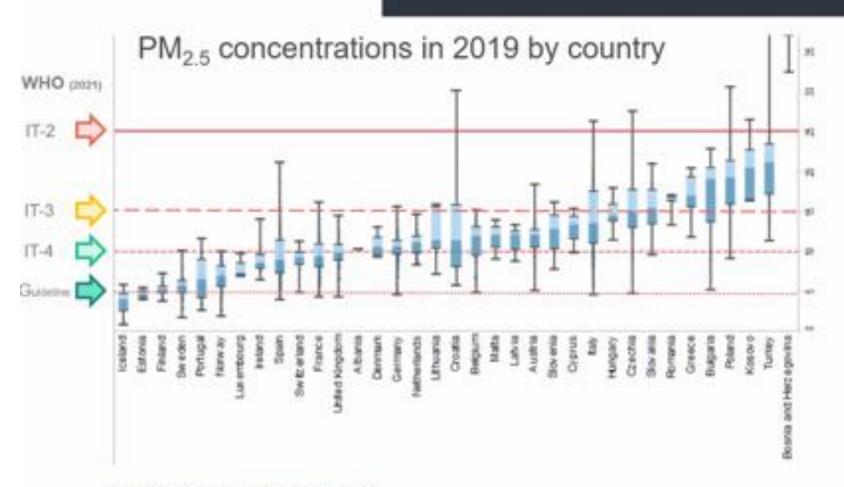
b.haffmann@uni-duesseldorf.de

WHO Air Quality Guidelines 2021–Aiming for Healthier Air for all: A Joint Statement by Medical, Public Health, Scientific Societies and Patient **Representative Organisations**

Barbara Hoffmann 1*, Hanna Boogaard 2, Audrey de Nazelle 3, Zorana J. Andersen 4, Michael Abramson⁵, Michael Brauer⁶, Bert Brunekreef⁷, Francesco Forastiere³, Wei Huang⁸, Haidong Kan⁹, Joel D. Kaufman¹⁰, Klea Katsouyanni^{3,11}, Michal Krzyzanowski³, Nino Kuenzli 12, Francine Laden 13, Mark Nieuwenhuijsen 14, Adetoun Mustapha 3,15, Pippa Powell 16, Mary Rice 13, Aina Roca-Barceló 3, Charlotte J. Roscoe 13, Agnes Soares 17, Kurt Straif 18 and George Thurston 19

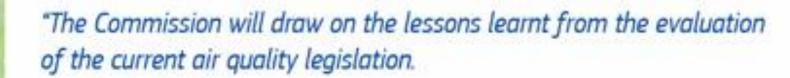
¹Institute for Occupational, Social and Environmental Medicine, Medical School, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany, 2 Health Effects Institute, Boston, MA, United States, 3 Imperial College London, London, United Kingdom, *Department of Public Health, University of Copenhagen, Copenhagen, Denmark, 5School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia, ESchool of Population and Public Health, University of British Columbia, Vancouver, BC, Canada. Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands, Department of Occupational and Environmental Health, Peking University, Beijing, China, 9School of Public Health, Fudan University, Shanghai, China, 10 Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States, 11 Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece, 12 Swiss Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland, ¹³Harvard T.H. Chan School of Public Health, Boston, MA, United States, ¹⁴Instituto Salud Global Barcelona (ISGlobal), Barcelona, Spain, 15 Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria, 16 European Lung Foundation, Sheffeld, United Kingdom, 17Pan American Health Organization, Washington D.C., DC, United States, 16Boston College, Chestnut Hill, MA, United States. 19 Department of Population Health, New York University School of Medicine, New York City, NY, United States

Keywords: air pollution, WHO Air Quality Guidelines, health effects, policy implications, average population exposure

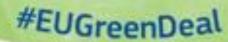


ERS Website: https://www.ersnet.org/news-and-features/news/urge-implement-air-pollution-policies-who-aggs/

It is time to act in Europe


		WHO 2005 Air Quality Guidelines	WHO 2021 Air Quality Guidelines	EU Air Quality Directives – Limit Values
PM _{2.5}	Annual	$10 \mu g/m^3$	5 μg/m³	25 μg/m³
PM _{2.5}	Daily (24-hour)	$25 \mu g/m^3$	$15 \mu g/m^3$	-
PM ₁₀	Annual	$20 \mu g/m^3$	$15 \mu g/m^3$	40 μg/m³
PM ₁₀	Daily (24-hour)	$50 \mu g/m^3$	$45 \mu g/m^3$	50 μg/m ³
NO ₂	Annual	40 μg/m ³	$10 \mu g/m^3$	40 μg/m³
NO ₂	Daily (24-hour)	-	$25 \mu g/m^3$	50 μg/m ³

Ambition level versus air quality today



It will also propose to strengthen provisions on monitoring, modelling and air quality plans to help local authorities achieve cleaner air.

The Commission will notably propose to revise air quality standards to align them more closely with the World Health Organization recommendations."

Communication on the European Green Deal (COM/2019/640 final)

Third EU Clean Air Forum

MADRID, 18-19 November 2021

10:30

Zero pollution: air quality & health

This session will focus on the health impacts and the general challenge that air pollution poses. Panelists will offer their perspective on the reasons to improve air quality, on the evolving health impact evidence, and on how we can live up to the zero pollution ambition of the European Green Deal.

KEYNOTE REMARKS

Dr Tedros ADHANOM GHEBREYESUS

Director-General, World Health Organization (WHO)

PANEL DISCUSSION

- o Silvia CALZÓN FERNÁNDEZ, State Secretary for Health, Spain
- o Zorana ANDERSEN, Chair Environment and Health Committee, European Respiratory Society
- o John F. RYAN, Director for Public Health, European Commission
- o Dr Francesco FORASTIERE, National Research Council (CNR-IRIB), Italy
- o Dr Maria NEIRA, World Health Organization (WHO) [TBC]

Acknowledgments

- Hanna Boogaard (HEI) and all the HEI Traffic Review Panel
- Bert Brunekreef (Utrecht University) and the WHO Air Quality Guidelines, Guideline Development Group